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J .  Phys. A: Math. Gen. 20 (1987) 1565-1585. Printed in the U K  

Exact solution of the integrable XXZ Heisenberg model with 
arbitrary spin: I. The ground state and the excitation spectrum 

A N Kirillov and N Yu Reshetikhin 
LOMI, Fontanka 27, Leningrad, 191011, USSR 

Received 4 March 1986 

Abstract. An integrable generalisation of the X X Z  Heisenberg model with arbitrary spin 
and with light plane type anisotropy is studied. Integral equations describing the thermo- 
dynamics of the model are found. The antiferromagnetic ground state, the excitation 
spectrum, the quantum numbers and scattering amplitudes of the excitations are determined. 

1. Introduction 

The Heisenberg-Ising model describes a chain of atoms with nearest-neighbour interac- 
tion. The Hamiltonian of the model with anisotropy of the X X Z  type has the following 
form: 

Here U: are local spin operators (Pauli’s matrices). The light plane type anisotropy 
corresponds to /AI < 1. In this case it is more convenient to use the parameter y, where 
cos y = A. 

Since the pioneering paper of Bethe (1931) the quantum Heisenberg-Ising chain 
of spin f has been studied by many authors. Among them Yang and Yang (1966) and 
des Cloizeaux and Gaudin (1966) computed the ground-state energy and the dispersion 
law of the excitations. The thermodynamics of the model were described by Takahashi 
and Suzuki (1972). Correct quantum numbers of the excitations and their scattering 
amplitudes were found by Babelon er al (1983). 

The development of the quantum inverse transform method (QITM) (see Faddeev 
and Takhtajan 1979, Kulish and Sklyanin 1982) has led to the important notion of the 
R matrix and established its crucial role in the theory of quantum integrable systems. 
These matrices describe commutation relations between the elements of the quantum 
monodromy matrix. QITM opens the way for a systematic construction of the families 
of integrable systems connected with given R matrices. In particular, the X X X  model 
of higher spin (Kulish and Sklyanin 1982, Takhtajan 1982, Babujian 1982), the lattice 
version of the sine-Gordon model and some other models were constructed along these 
lines (Izergin and Korepin 1982). 

The present paper is concerned with the exact solution of an integrable generalisa- 
tion of the model (1) to the case of arbitrary spin. In the case of anisotropy of the 
light axis type the ground state and the excitation spectrum were determined by Sogo 
(1984). 

0305-4470/87/061565 + 21$02.50 0 1987 IOP Publishing Ltd 1565 
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This model is formulated in the papers by Kulish and Reshetikhin (1981) and 
Kulish and Sklyanin (1982). 

2. Description of the model 

In order to generalise the model (1) to the case of arbitrary spin we start with the 
description of the corresponding R matrix. 

Let V, =C't+' be the irreducible SU(2) module with spin li/2. By definition, R$?'J'(U) 
is a linear operator acting in Vi@ Vj which depends on a complex parameter U and 
satisfies the Yang-Baxter equation 

R ~ ~ , ' ~ ) ( u ) R ~ ~ , ' 3 ) ( U + v ) R ~ ~ , ' 3 ) ( v ) =  R2;'3 ( ' "(v)R:>'"'(u+ V ) R ~ ~ " ~ ) ( U ) .  (2.1) 
The simplest R matrix is that corresponding to the spin-: representation both in 

vi and V,. It is acting in C2@C2 and is given by 

1+u3@u3)+is in  y(a+@u-+a-@a+) (2.2) 
2 

where a* = u1 f iu2, uu are the Pauli matrices. Using the fusion procedure for R 
matrices (see Kulish et a1 1981), it is not difficult to construct the R""(u), acting in 
Q = I + l @ C m + l :  

/ - I  m-1 

gIm(u)= fl fl sinh[u+iy(l+m-k-j+1)]  l a m  (2.4) 
k = l  j = O  

and P&) ,  Ptb) are projection operators onto the subspaces of completely symmetric 
tensors in Val 0. . .@ V,, and v b ,  0. . .@ vbm, respectively, with V,, = vb, = e2. The 
product in (2.3) is ordered in accordance with the increase of indices. The matrix A(') 
is defined in the following way: 

A(' )  =c lR,11/2P(a) 
a 

where R, and P',) are defined by the spectral decomposition 

The matrix (2.3) is analytic, without zeros in the whole complex plane of variable U. 
It has simple asymptotics at U + 0;) 
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where the operators S', S3 satisfy the following commutation relations: 

[ s3, S'] = *2S' [ S + ,  S-] = sin( #)/sin y. (2.8) 

Let d be the free associative algebra generated by the elements S', S3 satisfying the 
commutations (2.8). The space C'+' is a natural module over d with the highest weight 
vector (0) 

~ 3 1 0 )  = 110) S'lO) = 0. (2.9) 

Note that for m = 1 the matrix (2.3) may be easily expressed through the elements of 
the algebra (2.8) 

Substituting (2.10) into (2.3) yields a simplified expression 

m 

Rb'$;(u) = Al;n'P&) n Rbk:'[u+iy(j- l)]P&)A{T)-' l a m .  
j = 1  

The spectral decomposition of (2.3) was obtained by Jimbo (1985). 
At U = *iy the matrix (2.10) degenerates to 

R('."(iy) = p 9 u + u  R;;l)(+) = pp(I-1) 12 12 . 
12 1.2 12 

(2.10) 

(2.11) 

(2.12) 

Here 9"'') are the projection operators onto the subspaces of the spin ( I f  1)/2 in the 
decomposition of the tensor product of the d moduli of spin 1/2 and spin 4 (rank 

Using (2.1), the properties (2.12) and the fusion procedure of Kulish el a1 (1981), 
9('+')= 1+2,rank9( '- ' )= I ) .  

one can prove that the following relations hold: 

) I > m  (2.13) = (sinh( u + i ym ) R  [!:)"')( U )  0 
sinh U R{i;):;'")( U + 2iy) * 

0 
sinh U sinh[ u + iy( m + l)]R{&'$'"( U + 2iy) ) I < m .  

(2.15) 

Here the block structure is in accordance with the decomposition (2.13) of the 
tensor product VI@ V2, V(12)=Q=', V(12)=C'fZ. 
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where ??(a) are the projection operators onto the corresponding eigensubspaces of 
matrices B"' and C'" from (2.12). 

In order to describe the integrable generalisation of the Heisenberg model (1.1) to 
the case of higher spin, let us define the family of the monodromy matrices 

(2.18) 

These matrices act in the tensor product Va @ A  where A = V, 0 . . . 0 V, is the quantum 
space of the system and Va is the auxiliary space, V, =Cm, Va =Cr. 

By definition, the relative trace of the monodromy matrix over the auxiliary space 
gives the transfer matrix. Transfer matrices form a commutative family of operators 
acting in A (Baxter 1972, Faddeev and Takhtajan 1979, Kulish and Sklyanin 1982) 

(2.19) 

From (2.14)-(2.16) we obtain the recurrence relations for the transfer matrices (2.18) 

T'"( U )  = Rk';"'(u) . . . R;'c'( U ) .  

t j" ) (  U )  = TraT"'( u )  [ t j m ) ( u ) ,  t ' ," ) (v) ]  = 0. 

l > m  

t',"(u)tj"(u+iy) = sinh(u+iym)Ntl,":(u)+sinh u N  tj!';(u+2iy) (2.20) 

(2.21) 

(2.22) 
Using these relations one can express all t i m ) (  U )  through t:"( U )  algebraically. The 

easiest way to get such an expression is by means of the generating function for tjm)(u) 

t\"(u)t',"'( u +iy )  = sinh(u +iym)Nt',"( U )  

+ sinh u N  sinh[ u + i y(  M + 1) ]Nt!,Pm?l( U + 2iy) 

t~"(u) t~"(u+iy)  = tj,",'(u)+sinh u N  sinh[u+iy(m+ 1)INtj_",)(u+2iy). 

l < m  

(1 - Zt\"( U )  + Z2d'"( U))-' 
m OD k - 1  

= C zkt'k"(u)+ C z k  .n- sinh(u+iyl)Ntkm)(u) 
k = O  k = m + l  / = m  

(2.23) 

where z is the shift operator 

(2.24) 
and d"'(u) is the quantum determinant of the matrix T'"(u)  (Kulish and Sklyanin 
1982) 

d'"' (u)  =sinh u N  sinh[u+iy(m+l)]"". (2.25) 
The eigenvalues of t l m ' ( u )  are easily calculated by means of the algebraic Bethe 

ansatz (Faddeev and Takhtajan 1979). They are characterised by the set of the numbers 
{u j } : ,  n d mN/2, and have the following form 

z - ' f (  U )  z = f (  U + i y )  

sinh( u - uj - i y )  s h h (  U - U, + iy) 
A\"')(u) =sinh(u+iym)N n +s inhuN n . (2.26) 

j=l sinh( u - U,) j = l  sinh(u - u j )  
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d 
d u  

2 = -i - log r',")( U )  

The numbers uJ are the solutions of the system of Bethe equations. It is more 
convenient to write this system in terms of the new variables Aj  = 2 u j / y + i m  

- Nak(- iym)  
u = - - l y m  

sinh[i y(AJ + im)]  )" = fi sinh[i Y ( A , - A , + ~ ~ ) ]  

sinh[$ y(A, - im)]  k # ]  sinh[i y(AJ-Ak -2i)]' 

d N 

= -i 1 Pnn+,- R(m*m) (  U )  

(2.27) 

- Nak(-iym). (2.31) 

Substituting (2.26) into the generating function (2.23) we obtain an  exact expression 
for the eigenvalues of t \""(u)  in terms of numbers uJ 

I -  I s inh(u-uk+iy l ) s inh(u-uk- iy )  

sinh( u - uk - iy )  sinh( u - uk + iyl) 
+ao(u)N  n s inh [u -uk+ iy ( l -1 ) ]  k = l  Sinh(U-Uk) 

(2.28) 

where 

1-1 J - 1  

a j ( u ) =  n s inh(u+iyq)  s inh [u+ iy (m+p) ] .  
4 =I p = o  

(2.29) 

N 

[X,S:]=O s,= 1 s', 
n = l  

(2.32) 
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where S', are defined by (2.8). The operator S,  is diagonal in the eigenbasis of the 
transfer matrix: 

S, (u , ,  . . . , U,,) = (5 m N  - n)lu, ,  . . . , U,,). (2.33) 

The Hamiltonian (2.31) changes sign under the replacement y +  7r - y :  

X( y )  = -JX( 7r - y ) J  (2.34) 

where 

J = e x p  i7r S', . ( neven ) 
Therefore, instead of considering X( y) in the interval 0 < y < 7r, we will investigate 

Adding the interaction with the magnetic field H, we obtain a final expression for 
separately the ground state and excitations of X( y )  and -X( y) at 0 < y < 7r/2. 

the Hamiltonian of the model under consideration: 

X ( H ,  Y ) = & X ( Y ) - S z H  (2.35) 

where ~ = * l , O < y < 7 r / 2 ,  H > 0 .  
The spectrum of this Hamiltonian may be calculated from (2.28) and (2.31): 

+ H  --H (2.36) ) E = i  (- E sin( my) 
k = l  sinh[i y (hk+im)]  sinh[f Y(hk-im)] 

where the numbers h k  are the solutions of the system (2.27). 
The full momentum P is defined as the logarithm of the translation operator: 

t r ) ( - iym)  =constant x p l z . .  . p I N  3 constant x exp(iP) (2.37) 

e-"OneiP = O n + l .  (2.38) 

The eigenvalues of P may be found from (2.28) and (2.31): 

P = k = l  2 tan-'( tanh( T) cot( y)). (2.39) 

Now we have finished the algebraic part. In the next section we will consider our 
model in the thermodynamical limit. 

3. The thermodynamic equations 

In the thermodynamical limit n /  N is fixed, 0 S n /  N < S and N -$ CO. In this limit the 
solutions of the system (2.27) may be arranged in the so-called strings. A string of 
length n and parity U, = *1 is defined as a family of nh, with the same real part, of 
the form 

h:J=h",i[n+l - 2 j + ~ ( l - ~ , u , , ) p , ] + O ( e - ~ ~ )  6 > 0 .  (3 .1)  

The number A :  is called the string's centre and U, = *1 is the spin parity (see (3.8)), 
m =2S, 
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To describe admissible lengths and parities of strings let us define the set of numbers 
p ,  and the sets of the numbers b,, y , ,  m,:  

Po= T I Y  PI = 1 b, = [Pt/P,+,l Pl+l = PI-1 - bn-lPt i > l  (3.2) 

y - ,  = 0 Yo= 1 y , =  bo Y,+l=Y,-l+bly, i > O  (3.3) 

mo=O m, = bo m,+, = m, + b, i S 0 .  (3.4) 

The numbers b, are defined by the decomposition of po into the continued fraction 

The following sequences were first introduced by Takahashi and Suzuki (1972): 

nj = yi-l  + ( j  - mi)y i  mi S j < mi+l  (3.7) 

uj=un1=exp ( i.rr [ - '1; '1) j + m, , U,, = - 1. (3.8) 

For S = f one can prove that in the states with any 0 s n /  N < S the lengths and 
the parities of the strings are given by (3.7) and (3.8). There are no restrictions on the 
position of the centres of strings in this case. If S > f the lengths and the parities of 
the admissible strings also form the series (3.7) and (3.8). But now the restrictions on 
the centres of the strings may appear. There are no such restrictions however for all 
states with 0 S n /  N < S if 1 + 2 s  is the Takahashi number (Kirillov and Reshetikhin 
1985a,b) 

1 + 2 S = n ,  m, s CT < m , + ,  . (3.9) 

If po  is a rational number, P ~ + ~ = O  and i S c z  in (3.2)-(3.4). In  this c a s e j s  m a + l  
= U, where U is the nominator of the fraction po= u / u .  Next we shall 

qJ = (- 1' [PI - ( j  - m l  ) p  I+ 1 1  

Here nu is one of the numbers (3.7). 

and n, 
use also the set of numbers 9,: 

m, s j < m,+). (3.10) 
To obtain a system of equations for the centres of strings we substitute (3.1) in 

(3.7) and consider the product of these equations for A Z J  over 1 4  j S  n. Taking 
logarithms we obtain the system ( A t ' =  A ? )  

Y 

(3.11) 

Here uJ is the number of j strings. I', is an integer (or a half-integer). The functions 
t , , zs(A)  and OJk(A) were calculated directly from (2.27) and have the form 

min(n1,2S) 

/ = I  
t j , z s ( A )  = f ( A ,  Inj -2SI +21- 1, u,uu) (3.12) 

@,k(A)=f(A, / " ~ - ~ k l ,  U,Uk)+f(A, ",+nk, V,uk) 
min(n .n,  1-1 
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2 tan-'{ tan[ (?--&)n] tanh( E)} if - n is non-integer 

if - is integer. 
(3.14) Po 

n 

l o  Po 

f ( A ,  n, 0) = 

We use the notation of Takahashi and Suzuki (1972). 
In the thermodynamic limit the centres of the j strings fill the real axis with the 

densities p j ( A ) .  Following Yang and Yang (1966) we introduce the hole densities 
pF(A) .  The value pF(A)  dA is the number o f j  strings which are absent in the interval 
dA in a given state. 

The state (2.26), which at finite N is characterised by the numbers 16 at N+co, 
is described by the densities pj(A). For the densities p j ( A )  and & A )  from (3.11) we 
obtain a system of integral equations: 

where r (  j) = i if mi G j < m i + l  and 

(3.15) 

(3.16) 

Here a*b is the convolution of functions a(A), b ( A )  defined by 
+m 

(u*b)(A) = 1 a(A - P ) b ( P )  dPL. 
-X 

From (3.12)-(3.14) one can obtain the expressions for the functions aj,2s(A) and 
Ajk(A). To describe it let us introduce the functions u j ( A )  and n,(A) defined by their 
Fourier transforms 

sinh( qjx) 
sinh( pox) * 

c?j(x) = 

Here {x} is the fractional part of x. 
We use the following normalisation of the Fourier transform: 

+m i m  

f (x )  = exp(-iAx)f(A) dA f ( A )  = 1 exp(iAx)j(x 

The following statements follow from direct calculations. 

Proposition 1. Let k s j ,  then 

-m -m 

a k j  (x )  = ajjk (x ) = 26, (x)  fij (x )  + ( - 1 ) r (k)8  k,m, +, 8 

Proposition 2. Let m, < U < m , + i ,  then 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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In appendix 1 some helpful identities are given for the functions &,(x) and G j ( x ) .  
Passing to the limit N+co in equation (2.36) we obtain the energy of the state 

corresponding to the set of densities p , ( A ) :  

(3.22) 

We obtain the equilibrium state by minimisation of the free energy functional 

F = % - T S  (3.23) 

where S is the combinatorial entropy 
r +OC 

Using equations (3.15) one can express the free energy of our model in terms of 
the solution of the system of non-linear integral equations 

( - l )r"1aj ,2s(A)Tlog[l+exp(-~~j(A))]  dA. (3.26) 

Here the functions E ~ ( A )  are the energies of j strings and exp(-PEj(A))= 

Equations (3.25) and the expression (3.26) completely determine the thermodynami- 
p j ( A ) / p ; ( A ) ,  p = 1/T and T is the temperature. 

cal properties of the model. 

4. The ground state of the model and the excitations 

Now let us study the ground state and the excitation spectrum at T-0 .  In this case 
equations (3.25) becomes linear 

~ ( 4 ~ / y ) a ~ , ~ ~ + n ~ H - & f -  1 ( - l ) r ' k ' A j k * ~ :  = O .  (4.1 ) 
ksl 

Here &:(A) are the negative and positive parts of the functions &,(A). An expression 
for the ground-state energy may be obtained from (3.26) in the limit 

r +O 

(4.2) 

The functions &;(A) have a simple physical meaning. The ground state of the 
model is characterised by the property that all the negative energy levels are filled, i.e. 
the Dirac sea is filled. The Dirac sea consists of the strings for which &,:(A) f 0. The 
energies of the hole type excitations are &,-(A) and the energies of the particles are 
&;(A). The functions &, (A)  may be calculated exactly at H = 0. In this case they are 
either strictly positive or strictly negative, or identically zero in the whole range of 
variable A. Below we shall consider only the case H = O .  
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The structure of the ground state of the system depends on the sign of the product 

(a) E = (-l)r. From the system (4.1) we conclude that in this case the Dirac sea 
consists of mi strings with i = r + 1 (mod 2), i s r + 1. We now give an expression for 
the non-zero functions E ~ ( A ) .  It is most simple to write it down in terms of their Fourier 
transforms 

E (  -l)r. 

It is easy to calculate the asymptotics of the 

(4.6) 

(4.7) 

functions ( A  ) at A + 03 

rPi+l 
2Pi 

0’ - mi + 1) - 

x exp( - 2) [ p i  sin( ?)]-I 

&(O) m , + , ( A )  2: 2Po COS( z) exp( -$)[ p i  sin( -) r?’i+l 1 i c r, i = r (mod 2). (4.9) 
2Pi 

mi s j < mii l  

\ 1-1 

(4.8) 

These asymptotics are crucial to the investigation of the scaling limits of the 
anisotropic XXZ model. 

(b) E = (-l)r+’. In this case the Dirac sea consists of the mi strings with i = 
r (mod 2 ) ,  i S r and also the (U  - 1) strings. The energies &:(A) with j s mr are given 
by (4.3) and (4.4). There is also an exact expression for E ~ - ~ ( A )  

(4.10) +m exp(iAx) -= dx Po 
E ,- 1 ( A  ) = - E i- 1 ( A  ) = 4p0 

1 - m  cosh(pr+,x) 2~ Pr+1 cosh(rA/2pr+l)‘ 
It is not difficult to calculate the momenta of the excitations 

pjo)(  A )  = E;’) dp. (4.1 1) 

From this formula one can obtain the excitation energies as functions of the physical 
momenta. Their behaviour at finite momenta remains obscure but for small momenta 
they are approximately linear. So we have the spectrum of sound type 

E;”( p )  “I rp/2p, p + O ,  m i - , s j s m i .  (4.12) 
In the following we shall use the parameter A instead of p. We call it the excitation 
rapidity. 

I:, 
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It is easy to see that the functions (4.3) and (4.4) satisfy the following relations: 

E $ , ' + ~ { A  +i[p, - ( j +  1 -m,)p,+l]}+~',O,'+l{A -i[p, - ( j + l  -mt)p ,+ , ]}  = &:"(A) 

&:"[A +i(l-m, + l)p,+,]+sj0'[A - i ( j - ~ , + l ) ~ ~ + ~ l = ~ ~ , + , - m , + 2 ~ ( ~ )  (0) 

(4.13) 
(4.14) 

where [ j + 1 - m, + 21 = ( j  + 1 - 2m, - 2) mod( b,) + m,.  These relations describe the boot- 
strap in the system. They imply that particle-like excitations (with &:(A) # 0) may be 
interpreted as the bound states of the holes (i.e. the excitations with e,-(h)#O). 
Moreover, the particle-like excitations form the bound states which are also particle- 
like. In analogy with the sine-Gordon model we may call the particle-like excitations 
'breathers'. The hole-like excitations may be called kinks. Below we shall calculate 
the scattering amplitudes and we shall see that the poles of these amplitudes are in 
agreement with the shifts of arguments in (4.13) and (4.14). 

Substituting the expressions (4.3)-(4.7) and (4.1 1 )  into (4.2) we obtain the ground- 
state energy at zero magnetic field: 

%',(O)= - ( - l )r+'  a*m,,2s(x)E*',o,)(x) dx E = ( - l ) r  (4.15) 
+E 

i s r + l  --CO 

r = r + l  (mod21 

+CO 

%'0(0)=- [ a*m,,zs(x)E^',O,)(x) dx 
1Sr - X  

1 = r ( m o d 2 )  

+E [-, a*u-1,2s ( x )*(a)  ~ , - i ( x )  dx & = ( - l ) r + l .  (4.16) 

Let us introduce new notations for the string indices in accordance with the role 
of different strings in the composition of the ground state 

{ mili s r, i = r (mod 2)) U { (T - 1) & =(-I )?+'  
{.io}={, m i l i < r + l ,  . i = r + l  (mod2)) E = (-1y 

(4.17) 
(4.18) 

{ j  I s j < mi ,  i s  r, i = r (mod 2)} & = ( - 1 ) r + l  (4.19) 
jlmi-,Sj<mi,iSr+l,i=r+l(mod2)} E = ( - l ) r  (4.20) 

{j,} ={other strings}. (4.21) 

{jl} = { { 
The indices j ,  denote the sea strings. The jl strings correspond to the breathers 

and the j ,  strings have zero energy. 
To calculate the scattering amplitudes let us transform the system (3 .15)  in the 

following way. Using equations (3 .5)  for the sea strings we express the densities pjo 
through the corresponding hole densities p;,. Substituting these expressions for pjo into 
the equations for pj, and pj2 we rewrite them in terms of hole densities of the sea strings. 
After some calculation we obtain the following system: 

(4.22) 

(4.23) 

(4.24) 

The kernels A'". ' ) ,  B,,, and the functions bko,o, b k , , u  are given in appendix 3. 
Before the calculation of the scattering amplitudes let us find the spin of the 

excitations. Using the system (4.22)-(4.24) we can cast the expression (2.33) into the 
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following form 

sz = Z { f  v: - M } .  (4.25) 

Here 
z = (-l)""p0/q, 

r+ 1 and a = m,,, at E = ( - l )r ,  CY = (T- 1 at E = ( - 1 )  ; v: = N jTz p t ( h )  dh is the number 
of holes in CY strings and M = xkSa+l np2Lvk, where n"O' is the set of Takahaski 
numbers (3.7) defined by Co. The values of CO are given by (A3.13) and (A3.14), 

Equation (4.25) implies that there is a finite spin renormalisation by the constant 
z. Renormalised spin of a kinks is equal to i. The spin of other kinks and the spin 
of the breathers is equal to zero. 

There are many ways to calculate the scattering amplitudes (Korepin 1979, Destri 
and Lowenstein 1982, Woynarovich 1982, Tsvelick and Wiegmann 1983). We shall 
calculate them from Bethe equations over the physical vacuum (PBE)  (Destri and 
Lowenstein 1982, Woynarovich 1982). This is a system of equations for the rapidities 
of the physical excitations which follows from the periodical boundary conditions for 
the wavefunction. The PBE system gives the equations (4.22)-(4.24) in the thermo- 
dynamical limit, when the number of physical excitations is macroscopically large. 

We shall omit a derivation of the PBE, since it is rather lengthy. We present only 
the final result and demonstrate how to obtain the equations (4.22)-(4.24) from the 
BPE system in the thermodynamical region. 

Uk = N jTz p k ( h )  dh. 

We shall write Bethe equations in terms of rapidities of physical excitations 

ex P ( ip,, ( A bk ) 1 N ) 

- I  

(4.26) 
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(4.27) 

Here A b k i  are the rapidities of the holes in mk strings and Abk3J) are the rapidities 

The functions & , ( A ) ,  Sk,(lj,(A) and s ( k , j j ( [ , j p i ( A )  are defined by the following for- 
of ( j  + mk) strings. 

mulae 

or, in more detail, 

exp(ixA) sinh[(p- l ) x ]  dx  ({I x 2 cosh x sinh(px) 2 7  
S (  A ; p )  = exp 

- T((-iA + 2)/4)r(iA/4)r(-iA/2p) 
T((iA + 2)/4)r(-iA/4)r(iA/2p) 

- 

T2(( - i A  + 2mp + 2)/4)r2(  ( i A  + 2mp)/4) 
r2((iA +2mp+2)/4)r2((-iA +2mp)/4) 

These functions satisfy the bootstrap relations 

Sm, , ( / , , i (A  1 = SmLmlTl (A + i ( ~ /  + j n i l  ) ) S m L m l + , ( A  - i ( ~ /  -h+ I ) 1 
S( / ,m ) (  k , ~  )( A ) = S( / ,m ) ,mk +, ( A -k ( Pk -jpk + I ) S( I,m ),mi + I ( A  - i( Pk -jph + I 

(4.13') 

S ( k , J ) , ( k , q ) ( A  +ilpk+l)s(k./,,k.qi(A -iJph+l) = S ( k , [ ~ + l l i . ( k . q ) ( A )  

where 
If  E = (-l) ,+' ,  we have k = r (mod 2), k < r in (4.26) and k s  r in (4.27). To obtain 

the equation for the rapidities of holes in m, strings from (4.26) we must replace b, 

(4.14') 

+ I ]  = ( j  + I)  mod bk. 
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by (a- m, - 1) and A:+')  by Ab"-". The equation for the rapidities of holes in (a- 1) 
strings has the following form 
exp[ip,- l (  A ? - ' ) )  NI 

U: C l  

= n S , - ~ , , ( A ~ " - ' ) - A ; ) )  IJ S , - ~ , , - ~ ( A ~ " - ~ ) - A ( ~ - ~ )  s )  
p=1 @+a 

(4.29) 

Here to is defined by (A3.13). The numbers pa' parametrise the scattering states. 

At E = (-l)r we have k = r(mod2), k s  r in (4.26) and k c  r +  1 in (4.27). Let $o 

The numbers pbk) satisfy an auxiliary restriction: 

Below we give a system of equations for these numbers. 

be defined by (A3.14). Replacing br+l by F0 we obtain an equation for the At'". 
IImpbk'l<f(bk-2-1) 

a -mr -2  
( k = r ( m o d 2 )  k s r, IIm pU.bp-')l< cI at E = (- 1) r+l 

L 

k = r + l ( m o d 2 )  k S r + l a t E = ( - l ) '  

and they are the solutions of the following system: 

(4.30) 

(4.31) 



Integrable X X Z  Heisenberg model: I 1579 

The equation for the numbers p t + l )  in the case E = ( - l ) r + l  are the same but instead 

with numbers Ahr+2*J' must be omitted. 
of ~ ( r + ? )  and b, we must write Ab"-" and ( U -  m,+  l ) ,  respectively, and the multiplier 

The equations for the numbers p, at E = ( - l ) r + l  have the following form: 

(4.32) 

At E = ( - l ) r  the system is the same but the numbers Ah"-"  and pr+,  must be 
replaced by the numbers A;+') and pr+2,  respectively. 

The thermodynamical limit over the ground state corresponds to a macroscopically 
large amount of excitations. In this limit the numbers Abk' ,  Abk3') and pik)  fill in the 
real axis with densities p,,,, p,! and pjz and equations (4.26)-(4.32) give the system 
(4.22)-(4.24), namely the numbers Ahk) and Aik*') fill in the real axis with densities 
ph,,(A) and P ~ + ~ , - ~ ( A )  correspondingly. The numbers p*.bk' at vk >> 1 form strings with 
length 1 6 j C bk-2 - 1 and positive parities. Strings with length 1 and negative parity 
are forbidden by the constraint (4.30). The j strings in phk) at vk >> 1 fill in the real 
axis with the densities P , + ~ ~ - ~ ( A ) .  In a similar way the numbers p, also form strings. 
These strings fill in the real axis with the densities pj2(A) ,  wherej, > (+ - 1 at E = ( - l ) r + l  
a n d j Z > m , + l  at ~ = ( - l ) ~ .  

Equations (4.26)-(4.32) contain all information about scattering amplitudes. The 
right-hand sides of equations (4.26), (4.27) and (4.29) are equal to the eigenvalues of 
the full S matrix (Destri and Lowenstein 1982). The equations (4.31) and (4.32) are 
called the high level Bethe ansatz equations. The solutions of these equations para- 
metrise the eigenvectors and eigenvalues of the full S matrix. Comparing these 
equations with the known Bethe ansatz formulae we restore the two-particle S matrices. 

If we ignore the restrictions (4.30) we obtain the following kink-kink S matrices 
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Here matrices g('-"')(A, p )  are connected with the matrices (2.3) by the following relation 

R".""( U - i-y( m + 1 - 2)/2) l a m  1 m - l  g""'(A; p )  = n 
i = o  sinh{u+iy[(m+1)/2-j]} 

(4.35) 

where U = ~ A / 2 p ,  y = -r /p .  
In accordance with the bootstrap formulae (4.13), (4.14) and (4.13') and (4.14') the 

breather-breather and the kink-breather S matrices can be obtained as the bound state 
S matrices (see Karowski 1979). Many-particle S matrices are equal to the product 
of the two-particle ones. 

The structure of two-particle S matrices shows that the excitations in our model 
have auxiliary 'hidden' degrees of freedom. We call them 'hidden spins'. From 
(4.34)-(4.37) we conclude that for the kth kink the ( k  + 1)th hidden spin variable takes 
the value i while the value of the kth hidden spin variable is equal to ( t 1 ~ - ~ - 1 ) / 2 .  
The kinks which correspond to 'lower Dirac sea' (the holes in m,+l  strings at E = ( - l ) ,  
and the holes in ( a  - 1 )  strings at E = ( - l ) r + l )  have the renormalised original spin i 
and rth hidden spin variables take the value ( b r - l  - 1)/2 at E = ( - l ) r  and ( a  - m, -2) /2  
at E = ( - l ) ,+' .  The other hidden spins of these kinks are equal to zero. 

In the case S = f there are no 'hidden spins'. A systematic analysis of the Bethe 
equation in this case was given by Babelon et a1 (1983). 

Let us return now to the restrictions (4.30). They are the constraints on the scattering 
states and they admit only a part of the eigenstates of the S matrices described above. 
As a consequence, the number of degrees of freedom in the n-particle sector is much 
less than the product of dimensions of the one-particle spaces. This phenomenon 
appears also for the isotropic higher-spin Heisenberg model (Andrei and Destri 1983, 
Faddeev and Reshetikhin 1984, 1986). Its interpretation is not known at present. 

To conclude let us point out that the constraints (4.30) do not play any role in the 
limit S + 00 and thus pose no problems for the description of scattering states in this 
limit. This fact is useful for the solution of the quantum anisotropic principal chiral 
field model and O(3) non-linear (T model (Wiegmann 1984, Faddeev and Reshetikhin 
1986). 

5. Conclusion 

We have given here a detailed description of the X X Z  model with higher spin and 
derived the equation which governs its thermodynamic behaviour. Our argument relied 
essentially on the assumption that the spin and the anisotropy parameter are com- 
mensurable. This assumption emerges from the analysis of the string solution to the 
Bethe equations. It ensures that there are no restrictions on the positions of the centrum 
of admissible strings. Conversely, if it fails, there are always some non-trivial restric- 
tions on these positions. In the thermodynamical limit the range of the admissible 
values of A"'  depends on densities U,/ N where U, is the total value of j strings in a 
given state. In some cases the constraints for the positions of the strings' centres appear 
already over the ferromagnetic vacuum. 

A correlation between the spin and the anisotropy parameter is, of course, by no 
means casual. As a matter of fact, operators S', are present in the Hamiltonian only 
in the form of algebraic combinations of exp(iyS3,). Hence the model is characterised 
by two periods. The first one is connected with rotations in U(  1 )  and is related to the 
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spin value. The second one is connected with the Hamiltonian and is equal to pa = T /  y. 
Obviously, if S < p o  the values of exp(iyS3) for - S S  S 3 S  S sweep a part of the unit 
circle only once. The situation does not differ from the rational case (corresponding 
to y+O).  On the other hand, if S > p o  then exp(iyS3) winds over the circle several 
times. As we conclude from the exact solution, the structure of the ground state is 
then completely different. Thus our model gives an example of a quantum integrable 
system for which the commensurability effects are present. 

Another interesting feature of our model is the existence of hidden spin variables. 
This phenomenon was found for the isotropic model with higher spin as well. At 
present it does not have any qualitative explanations. 

The case of rational p o  and 1 + 2 S  = y o + ,  = rime+, corresponds to the lattice sine- 
Gordon model considered by Bogolubov and Izergin (1984). 

It is especially interesting to consider the magnetic anisotropy in the limit S +  W. 

This limiting case corresponds to a relativistic quantum field model, its scattering 
matrix being the tensor product of the kink S matrices for the Gross-Neveu and 
sine-Gordon models. It is tentative to conjecture that this scattering matrix corresponds 
to the anysotropic SU(2) chiral model (Wiegmann 1984). 

After this work was completed we have learned that the case S < T /  y had been 
studied by Babujian and Tsvelick (1986). 
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Appendix 1 

Below we give some properties of the functions d,(x), fi,(x), C?,,~~(X) defined by the 
formulae (3.18), (3.17) and (3.21). All calculation in the main text are based on these 
properties. 

The functions fi,(x) and C;,(x) satisfy the following relations 
(1) 

fi, (X ) = $8 (XI ( f i j  - 1 (X ) + f i j  + I (XI (Al . l )  

fim,-l(x) = J t ( x ) f i m - l ( x ) + ( 1 - 2 ~ m , ~ , - , - i ) f i m , - ~ ( x ) ~ i ( x ) +  fim,(x)Jj+l(x) (A1.2) 

fim,(x) = $t+I(x)(-fim,-l(x) + fim,+k(x)). (A1.3) 

m , - l  < j <  m, - 1 

(A1.4) 

where i o =  (-l) 'qJ/pr+I, i=  k -i and fi,,"o'(x) are the functions fi,(x) (see (3.7)) which 
are defined by the number bo. 

(3) 
&(X) = fik(X)A',",^'(X) a * k ( X )  = db,(x)AL:;,^'(x). (A1.5) 
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Here a = 1 , 2  and k E cia} (see (4.17)-(4.21)). For the first j the functions Gj(x) are 
given by the following simple formulae 

i j (x )  = coth x sinh j x  

n * , , ( ~ ) = ~ ~ ~ h [ ( p o -  l ) ~ ]  

l s j < m ,  

n*,,(x) = coth x sinh(box). 

The functions Zj,&x) as well as Ajk(x) can be expressed through the functions 
t j ( x )  and nj(x) 

a*j,zs(x) = a*j(x) n*,(x)-cosh [({2}-1-:,-1)]pox]} n j z 2 s  

sinh{[ -qj + (-1) r")po]x} 
sinh( pox) 

nj d 2s. 

I 
a*j,Zs(x) = &(x)n*j(x) + cosh (qg)  

Appendix 2 

Let us give a general method for inverting the matrices which we use in this paper. 
Let x1 . . . x,, y ,  . . . y ,  be two sets of the variables and xo = 1, yo = 0, x,+, = 0, y,+, = 1. 

Theorem. If the matrix A = (a,) has the form 

i s j  
a y  = k; i s j  

and B = (b,) is the inverse matrix, then 

(A2.1) 

(A2.2) 

Using this theorem we compute the inverse matrix of Ajob( - l ) r ( k o ) .  If E = ( - l ) r+l  
this inverse matrix has the form 

A sinh( pi-2x) sinh( pi- ,x) 
Bm,m,(x) = 2 sinh( pix) sinh( p i - ,  bi-2x) cosh( pi- ,x) 

sinh( sinh( p i+ ,x )  
2 sinh( p ix )  sinh( pi+,  bix) cosh( p i + , x )  ' 

+ 

Here i = r (mod 2), i < r 

(A2.3) 

(A2.4) 

(A2.5) 

(A2.6) 
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+ 
sinh(q,#x) cosh(pi-lx) sinh(p,x) ~ i n h ( p , - ~ b , - ~ x )  

i = r(mod 2), i s  r, mi- l  6 k < mi 

1583 

A sinh( sinh( ~ , - ~ x )  
B m , m , ( x )  = 2 sinh(p,x) ~ inh(p , - ,b , -~x)  cosh(p,-,x) 

(A2.7) sinh(p,+,x) sinh(p,+,x) 
2sinh(p,-x) sinh[p,+,(a-m,- l)x] cosh(p,+,x) 

1- 

(A2.8) 
sinh(p,+,x) sinh(p,x) 

2 sinh(q,-,x) sinh[p,+l(a- m,- 1)x] cosh(p,+,x)' 
&-,,u-l(x) = (-l) ,+' 

If E = ( - l ) r  the matrix elements of E,, are given by the formulae (A2.3)-(A2.5) 
if i # r + l  and 

4 

(A2.9) 
sinh( p,x) sinh(p,-,x) 

2 sinh( p,+,x) sinh( p,b,-,x) cosh( p,x)' Bm,+,m,+,(x) = 

Appendix 3 

The functions bb,u and bk, coincide with the energies of corresponding strings: 

(A3.1) 

(A3.2) 

i = r(mod 21, i .= r, mi+,  k < M , + ~  

in other cases 

$0 u l l , k ( X )  1 )  =o  (A3.3) 

sinh[p,_,(k - mI-Jx] 
sinh( p ,_ b ,-2x) 

A',O;:'(x) = sinh[p,,,(m,+, - k)x] 

M , - ~  < k < ml- l ,  i = r (mod 2), i < r 

m, < k < m,+, , i = r (mod 2) ,  i < r (A3.4) 
sinh( PI + 1 b1x) I l o  in other cases 

sinh[p,-,(k - m,-,)x] 
sinh( p , - ,  b,-2x) 

m,-2  < k < m r - ,  

sinh[(c+- 1 - k ) j ~ , + ~ x ]  
sinh[(a- 1 - mr)p,+,x] 

m, < k < IT- 1 

in other cases 

(A3.5) 
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m, < k < u- 1 sinh[p,+,(k - m , b I  
sinh[p,+,(u- 1 -mr)x]  

(A3.6) 

in other cases. 

When E = ( - l ) r  the functions At;;) are defined by (A3.2) but now i = r +  1 (mod 2), 
i < r S  1. The matrix A:;:' at i S r is defined by (A3.4) and for A',o;Sl,k we have 

k s mr-l  

The matrix t,,, is the inverse of ~ b J o ( - l ) r ' J ~ ) )  and is given in appendix 2 .  
The matrix A"."' has the form 

2 cosh((qk + qm,)X)AinO:,:)(X) m,-, < jc k < m, 
in other cases 

,$:.l)(,) = 

(A3.7) 

(A3.8) 

A;ll{yx) = AiP,;:'(x) (A3.9) 

in other cases. 

(A3.10) 

If E = (-  1) r + l  we have for the matrix A'2s') the following expressions: 

(A3.11) 

(A3.12) 

j ,  k > u- 1 A y ( x )  = A;$)(p,+lx) - d0=(-1)'4"-! (A3.13) 
j = j - u + 1 ,  k = k - u + l  P r + l  

If  E = (-1)' the matrix @"(x) at j, k <  m,+, is defined by (A3.11). At j,  k >  m,+, 
this matrix is the same as (A3.13): 

All the formulae from this appendix are proved in Kirillov and Reshetikhin (1985b). 
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